<Various medical applications of IR radiation for different cells and tissue tissues.>
※横スクロールでご覧いただけます
Medical application |
Target | Light source or material | Wavelengths | Results |
---|---|---|---|---|
創傷治癒 | 皮膚の怪我(ラット) | セラミックコートシート | 5.6–25 μm (PEAK 8–12 μm) | 創傷治癒促進+TGF-β1 の発現 |
創傷治癒 | 皮膚の擦り傷(マウス) | 半導体レーザー | 810 nm | コラーゲンの集積と創傷治癒効果の増大 |
創傷治癒 | 軟組織(ラット) | 半導体レーザー | 904 nm | 創傷治癒+exclusion zone (EZ)の促進 + (1H NMR 1/T2)の増大 |
創傷治癒 | 軟組織(ラット) | 半導体レーザー | 904 nm | 創傷治癒の促進 、膜組織効果の測定(by 1H NMR tau©) |
神経刺激 | 坐骨神経(ラット) | 自由電子レーザー | 2.1, 3.0, 4.0, 4.5, 5.0, and 6.1 μm | 坐骨神経の小束に於ける特定エリアでの反応が発生 |
神経刺激 | 心臓(成長したウサギ) | 半導体レーザー | 1.851 μm | 成長したウサギの心臓に於ける光学鼓動の発現 |
神経刺激 | スナネズミ聴覚神経 | YAG レーザー(ホルミウムをドープ) | 2.12 μm | 光照射は蝸牛の反応幅を刺激した |
神経刺激 | 坐骨神経(ラット) | 半導体レーザー | 1.875 μm | ハイブリッド(電気・光学)刺激は持続的な筋収縮を発生させ、レーザー出力の必要値を下げた |
神経刺激 | ||||
神経刺激 | ヒト胎児腎細胞293 | 半導体レーザー | 1.889 μm | 一過的な光学刺激に於いて膜組織の静電容量が変化した |
光老化 | 肌(人) | 同下 | 600–1500 nm | フリーラジカルの形成とβカロチンの成分(抗酸化物)を減少 |
光老化 | 真皮(人) | 放射経路に水フィルターを備えた赤外線A(IR-A)放射線源 | 760–1440 nm | 真皮に於ける MMP-1の発現が増加 |
腫瘍への効果 | ヘーラ子宮頚ガン細胞 | Waveguide Thermal Emitter | 3.6, 4.1 or 5.0 μm | ミトコンドリア細胞膜電位の崩壊を引き起こし、酸化ストレスを増加させた |
腫瘍 | 乳癌細胞+健常胸上皮細胞 | Blackbody source equipped with 3–5 μm filter≒ 3–5 μm filter(セラミック) | 3–5 μm | Induced G2/M 癌細胞サイクルの停止を誘導し、マイクロチューブネットワークを再構成し、アクチン・フィラメント構造を変化させた |
腫瘍 | A549肺腺がん細胞 | 放射経路に水フィルターを備えたNIR放射線源 | 1.1–1.8 μm | DNA損傷時の反応経路を活性化した |
腫瘍 | ヒト細胞株(外陰部), ヒト肺癌株 (肺), 口腔の細胞 (舌),乳がん細胞株,歯肉腫 | FIR 発生パネルインキュベーター(炭素・シリカ・酸化アルミニウム・酸化チタン)にて被膜 | 4–20 μm (PEAK: 7 to 12 μm) | ATF3遺伝子の発現を高め、癌細胞の拡散を抑制した |
腫瘍 | 固形腫瘍 | 半導体レーザー | 904 nm | 88%の抗ガン作用(10年経過観察) |
腫瘍 | 固形腫瘍細胞形態学 | 半導体レーザー | 904 nm | 癌細胞患者に於いて選択的アポトーシス・壊死が発生 |
腫瘍 | 固形腫瘍:T2wMRI-Microdensitometry | 半導体レーザー | 904 nm | 癌患者に於ける抗腫瘍反応断定的なものとしての臨界面に於けるexclusion zone (EZ)の証拠となった |
腫瘍 | 固形腫瘍:serum levels of cytokines of peripheral leucocyte subsets | 半導体レーザー | 904 nm | 癌患者の細胞壊死因子及びTNF-α 可溶性IL-2レセプターに於ける免疫調整+and CD4 + CD45RA+ and CD25+ activated |
脳神経再生 | 軽脳挫傷 | 近赤外線LED | 870 nm | 認識機能,睡眠、外傷後ストレス性障害の向上 |
脳神経再生 | 脳卒中(塞栓形成うさぎ) | レーザー | 808 nm | 大脳皮質に於けるATP量の増加 |
脳神経再生 | 人脂肪幹細胞 | 半導体レーザー | 810 nm, 980nm | 増殖と分化を刺激した |
<Various medical applications of IR radiation for different cells and tissue tissues._1>
※横スクロールでご覧いただけます
Medical application |
Author, reference, et al | Year | Target | IR | Results |
---|---|---|---|---|---|
Wound healing | Toyokawa | 2003 | Skin wound in rat | Mid | Promoted wound healing and expression of TGF-β1 |
Wound healing | Gupta | 2014 | Dermal abrasions in mice | Near | Enhanced collagen accumulation and healing effects |
Wound healing | Santana-Blank | 2000, 2013 | Soft tissues in rat | Near | Promotes wound healing and exclusion zone (EZ) growth (1H NMR 1/T2) |
Wound healing | Santana-Blank Rodríguez-Santana | 2013 2003 | Soft tissues in rat | Near | Promotes wound healing, membrane effect measured by 1H NMR tau© |
Neural stimulation | Wells | 2005 | Rat sciatic nerve | Mid | Generated a spatially selective response in small fascicles of the sciatic nerve |
Neural stimulation | Jenkins | 2013 | Adult rabbit heart | Near | Induced optical pacing of the adult rabbit heart |
Neural stimulation | Izzo | 2006 | Gerbils auditory nerve | Near | Optical radiation stimulated the cochlear response amplitudes |
Neural stimulation | Duke | 2012 | Rat sciatic nerve | Near | Hybrid electro-optical stimulation generated sustained muscle contractions and reduced the laser power requirements |
Neural stimulation | Shapiro | 2012 | HEK-293T cells | Near | Altered the membrane electrical capacitance during optical stimulation transiently |
Photoaging | Darvin | 2006 | Human skin | Near | Formed free radicals and decreased content of β–carotene antioxidants |
Photoaging | Schroeder | 2008 | Human dermal fibroblasts | Near | Increased expression of MMP-1 in the dermis |
Antitumor action | Tsai | 2016 | HeLa cervical cancer cell | Mid | Caused a collapse of mitochondrial membrane potential and an increase in oxidative stress. |
Antitumor action | Chang | 2013 | Breast cancer cells and normal breast epithelial cells. | Mid | Induced G2/M cancer cell cycle arrest, remodeled the microtubule network and altered the actin filament formation |
Antitumor action | Tanaka | 2012 | A549 lung adenocarcinoma cells | Near | Activated the DNA damage response pathway |
Antitumor action | Yamashita | 2010 | A431 (vulva), A549 (lung), HSC3 (tongue), MCF7 (breast) and Sa3 (gingiva) cancer cells | Mid | Suppressed the proliferation of cancer cells through enhancing the expression of ATF3 gene |
Antitumor action | Santana-Blank | 2002 | Solid tumor Clinical trial | Near | 88% anticancer effect. Ten years follow up |
Antitumor action | Santana-Blank | 2002 | Solid tumor cytomorphology | Near | Selective apoptosis, necrosis, anoikis in tumor tissues of cancer patients |
Antitumor action | Santana-Blank | 2013 | Solid tumor T2wMRI-Microdensitometry | Near | Evidence of interfacial water exclusion zone (EZ) as a predicator of anti-tumor response in cancer patients |
Antitumor action | Santana-Blank | 1992 | Solid tumor serum levels of cytokines of peripheral leucocyte subsets | Near | Immuno-modulation in cancer patients of TNF-α sIL-2R and CD4 + CD45RA+ and CD25+ activated |
Brain neural regeneration | Naeser | 2014 | Mild traumatic brain injury | Near | Improved cognitive function, sleep and post-traumatic stress disorder symptoms |
Brain neural regeneration | Lapchak | 2010 | Strokes in embolized rabbits | Near | Increased cortical ATP content |
Adipose regeneration | Wang, Y., | 2016 | human adipose-derived stem cells | Near | Stimulate the proliferation and differentiation |
<Various medical applications of IR radiation for different cells and tissue tissues._2><IR=LLLT(Razor)>
2007
※横スクロールでご覧いただけます
Author, reference, et al | Year | Target | Results |
---|---|---|---|
Lubert | 1992 | Fibroblasts | Prevent cell apoptosis and improve cell proliferation, migration and adhesion |
Yu | 1994 | Fibroblasts | Prevent cell apoptosis and improve cell proliferation, migration and adhesion |
Yu | 1997 | Skin wound | Prevent cell apoptosis and improve cell proliferation, migration and adhesion |
Grossman | 1998 | Keratinocytes | Prevent cell apoptosis and improve cell proliferation, migration and adhesion |
Moore | 2005 | Endothelial cells | Prevent cell apoptosis and improve cell proliferation, migration and adhesion |
Agaiby | 2000 | Lymphocytes | Prevent cell apoptosis and improve cell proliferation, migration and adhesion |
Crysler | 2003 | Human gingival fibroblasts | Prevent cell apoptosis and improve cell proliferation, migration and adhesion |
Gavish: | 2006 | Porcine aortic smooth muscle cells | Modulated matrix metalloproteinase activity and gene expression |
Shefer | Muscle satellite cells | Activate muscle satellite cells, enhancing their proliferation, inhibiting differentiation and regulating protein synthesis | |
Hopkins | 2004 | Angiogenesis | Enhance neovascularisation, promote angiogenesis and increase collagen synthesis to promote healing of acute |
Corazza | Wound rats | Acceleration of cutaneous wound heaing with a biphasic dose response | |
Gigo | 2004 | Nerves | Stimulate healing |
Results | 2005 | Tendons | Stimulate healing |
Morrone | 2000 | Cartilage | Stimulate healing |
Weber | 2006 | Bones | Stimulate healing |
Shao | 2005 | Internal organs | Stimulate healing |
Bjodal | 2006 | Pain, inflammation by injuries | Reduce |
Carati | 2003 | Swelling | Reduce |
Oron | 2001 | Injury or ischemia in skeletal and heart muscles | Beneficial(multiple animal models:in vivo) |
Lapchak | 2008 | Damage after strokes | Mitigate damage in both animals and humans |
Oron | 2007 | After traumatic brain injury | Mitigate damage in both animals and humans |
Wu | 2009 | After spinal cord injury | Mitigate damage in both animals and humans |